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Abstract
We obtain useful analytic discrete breather solutions in the form of elliptic
functions for a large class of physically relevant nonlinear lattices through the
application of an algebraic approach. The method we introduce is quite accurate
and applies equally well to optic and acoustic chains. We present explicit results
forφ4 and Fermi–Pasta–Ulam lattices and discuss their implications to breather
properties such as generation and mobility. The method is useful also in cases
where no explicit analytic solutions can be obtained. In the context of the
present approach, discrete breathers are shown to be localized cnoidal modes
of nonlinear lattices.

PACS numbers: 63.20.Pw, 63.20.Ry

Ever since their introduction by Sievers and Takeno [1], intrinsic localized modes (ILMs) or
discrete breathers (DBs) have been the object of intense scrutiny both from theoretical and
experimental viewpoints [1–22]. Discrete breathers are time-periodic and space-localized
modes of extended, typically translationally invariant systems, that are discrete and weakly
coupled. In the frequency domain, DBs appear as impurity or gap states in nonallowed
spectral regions of the standard linear modes. Many theoretical issues regarding DBs, such
as rigorous mathematical existence [7, 8, 10], generation [1–13], mobility [5, 12], statistical
dynamics [14, 15], etc have been addressed. Recent DB experimental observation in man-
made systems [18–20], quasi-one-dimensional solids [21] and possibly in biological systems
[22] has increased the interest for understanding their role in a large class of systems. Even
though there has been tremendous progress in DB research during the last few years through the
use of mathematical and numerical techniques, the lack of analytic DB solutions for physically
relevant models has inhibited somehow large scale DB applications. The most widely used
approaches for DB study are either approximate, relying on the rotating wave approximation
(RWA) [1–3], or numerically exact, utilizing the DB construction from the anticontinuous limit
[7, 8, 10, 11]. While the former approach is straightforward, it is nonetheless approximate and
cumbersome in complicated models. The construction from the anticontinuous limit, on the
other hand, while very general and numerically exact, relies on long, complex computations
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and, furthermore, does not furnish analytical functional forms for DBs. The algebraic method
we present has the advantage of providing straightforwardly simple analytical DB solutions
within the elliptic function subset of periodic functions, is both simpler to apply and superior
in accuracy to the RWA, and works well for relevant models.

Let us introduce our method utilizing a one-dimensional lattice of oscillators each of mass
m that are coupled linearly with coupling strength C, while at the same time experiencing the
local on-site potential:

V (xn) = β

2
xn

2 +
γ

4
xn

4 (1)

where xn is the displacement of the nth oscillator from its equilibrium position and β, γ are
constant parameters. The Hamiltonian of the chain for m = 1 is

H =
∑
n

(
ẋ2
n

2
+
C

2
(xn+1 − xn)

2 + V (xn)

)
(2)

where the index n runs over the entire one-dimensional infinite lattice; we obtain the following
equations of motion:

ẍn = C(xn+1 + xn−1 − 2xn) − βxn − γ x3
n. (3)

If we were to use the anticontinuous limit approach for constructing a single breather [11],
we would have to first construct in a given lattice site a trivial breather of frequency ωb for
zero coupling, i.e. for C = 0, and subsequently continue analytically the trivial solution to
finite couplings C, keeping the oscillation frequency constant. As a result, we would obtain
a spatially localized solution where each site has a slightly different functional form in its
time evolution but all sites would oscillate with exactly the same frequency ωb. In order to
find analytically a good approximation to this exact breather and since there is no dramatic
difference in the evolution of distinct breather sites, we assume that the whole lattice oscillates
collectively in a fashion similar to the oscillations at the zone boundary of the Brillouin
zone [6], i.e.

xn(t) = αnx(t) (4)

where x(t) represents the coherent lattice oscillation and the sequence of constants {αn}
determines the local oscillation amplitudes at each lattice site. Upon substituting the
decoupling ansatz of equation (4) into equation (3) and some rearrangements we obtain
the equation for x(t):

ẍ = −Anx − Bnx
3 (5)

with

An = β − C
αn+1 + αn−1 − 2αn

αn
(6)

Bn = γαn
2. (7)

Equation (5) for x(t) is a simple nonlinear equation of second order; its solutions are

x(t) = cn[εnt|kn] (8)

εn
2 = An + Bn (9)

kn
2 = Bn

2(An + Bn)
(10)

where we assume presently for simplicity the initial conditions x(0) = 1 and ẋ(0) = 0.
The function cn is the Jacobian elliptic cosine of modulus kn; for the solution to be real and
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periodic, εn must be real and for the elliptic modulus kn, 0 � kn < 1. The Jacobian elliptic
cosine is a doubly periodic function with real period equal to 4Kn, where Kn ≡ K(kn) is
the complete elliptic integral of the first kind [23]. As a result, the frequency of the periodic
solution determined through equations (8)–(10) with (6) and (7) is

ωn ≡ ω(εn, kn) = εn
2
π
Kn

. (11)

The analytical DB solution at frequency ωb is then obtained through the localized sequences
of amplitudes {αn} that are solutions of the transcendental equation

ωn = ωb. (12)

In other words, for a given ωb, sequences of the amplitudes {αn} that are finite in a region
of the lattice, decay asymptotically in n and are roots of the transcendental equation (12),
give the amplitude part of the DB solution for finite C, while the time dependence is provided
by the elliptic function solution. We note that after the solution of equation (12) each pair
of (εn, kn) results in different cn evolution but with the same frequency ωb. Since, due to
the localized nature of the DB solution, there is a lattice breaking of symmetry manifested
in the local amplitudes {αn}, the pair (εn, kn) is directly associated with site n. We can thus
parametrize the DB at frequency ωb in terms of kn:

xn(t) = αncn

[
2

π
Knωb t|kn

]
(13)

while the amplitudes αn in this case can be expressed as αn = (8/π2γ )1/2knKnωb. We
note that while elliptic function modulus kn and non-time-dependent parts of the argument εn

are local, i.e. depend directly on lattice site indices through equations (6), (7), (9) and (10),
the DB analytical solution, and in particular the DB oscillation frequency, determined through
the transcendental eigenvalue equations (11) and (12), are global and independent of the lattice
location. The DB of frequency ωb is then brought into existence when the appropriate local
elliptic modulus–amplitude relation is achieved that makes ωb global for all sites; this local
DB interpretation can be quite useful in non-homogeneous and disordered lattices. When
αn amplitudes become zero, we truncate equations (6) and (7) appropriately. The maximal
coupling C for localized solution existence [8] is connected here to conditions for equation (5)
to have periodic solutions; a necessary condition is clearly kn < 1.

We will study some approximate forms of the transcendental equation (12) below;
presently we resort to numerics for obtaining its roots. In order to avoid the tedious
evaluation of Jacobian matrix derivatives required in the Newton method, we use the
straightforward Broyden root finding method [24]. In figure 1 we present the amplitudes of DBs
generated through the root finding numerical solution of the nonlinear eigenvalue problem of
equations (11) and (12) for the hard (γ > 0) as well as soft (γ < 0) unimodal φ4 potentials.
Substitution of these states as initial conditions into equation (3) results in the breather modes
determined analytically through equations (8) or (13). The analytical algebraic method in
the present case, besides being numerically fast and conceptually simple, provides analytical
time dependence of the localized states. Furthermore, it can readily tackle breather amplitude
stability issues; a Fourier expansion of the periodic solution of equation (13) gives [23]

xn(t) = 2παn
knKn

∞∑
m=0

qm+1/2

1 + q2m+1
cos [(2m + 1)ωbt] (14)

where q ≡ qn = exp(−πKn
′/Kn) and K ′ is the elliptic integral of the first kind evaluated at

the complementary modulus k′, with k′2 = 1 − k2. From equation (14) we observe that ωb
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Figure 1. Analytic breathers: in the upper plots initial DB amplitudes (left) generated through
equation (12) and cnoidal evolution after substitution in equation (3) for the central and next two
breather sites (right) for a hard φ4 potential (β = γ = 1, ω = 1.403 94, C = 0.025). In the lower
plots the same plots are given for a soft φ4 potential with solution xn(t) = αncd

[ 2
π
Knωbt|kn

]
,

nonlinear eigenvalue equation ω2 = (An + Bn/2)/
[ 2
π
Kn

]−2
, kn2 = |Bn|/(2An + Bn) for γ < 0,

where cd is a Jacobian elliptic function (β = −γ = 1, ω = 0.872 20, C = 0.06). In both cases,
time is in units of DB period and the numerical evolution agrees with the corresponding analytical
solutions.

as well as its harmonics cannot coincide with the linear frequency spectrum, since otherwise
the breather decays due to resonance with phonons, in agreement with the standard breather
theory [8, 11, 13]. We note that the expansion of the elliptic function breather expression
in trigonometric functions determines through the nome q the order at which the breather
decays, should a resonance of its harmonics with linear modes occur. Finally, we comment
that linear stability analysis of equation (5) results in Lamé’s differential equation that can
give conditions for DB linear stability, although numerics might be preferable.

Let us now come to acoustic chain models and in particular to the celebrated Fermi–
Pasta–Ulam (FPU) model with Hamiltonian [1, 11]

H =
∑
n

(
ẋ2
n

2
+
C

2
(xn+1 − xn)

2 +
γ

4
(xn+1 − xn)

4

)
(15)

where C, γ denote now the strengths of the couplings for the linear and nonlinear nearest
neighbour interactions, respectively. The equations of motion are

ẍn = C(xn+1 + xn−1 − 2xn) + γ
(
(xn+1 − xn)

3 + (xn−1 − xn)
3) . (16)
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Use of the decoupling ansatz of equation (4) results in identical equations for the internal DB
variable x(t) as before, i.e. equation (5), but with new coefficients An and Bn given by

An = −C
αn+1 + αn−1 − 2αn

αn
(17)

Bn = γ
(αn − αn+1)

3 + (αn − αn−1)
3

αn
. (18)

The expressions for the analytic solution equations (8)–(10) and the mode frequency
equation (11) are also valid but with the new coefficients.

Let us investigate some limiting cases of the new transcendental system. In the purely
linear case with γ = 0, equations (9)–(11), (17) and (18) result in the linear eigenvalue problem

αnω0
2 = C(2αn − αn+1 − αn−1) (19)

where ω ≡ ω0 provides the linear phonon spectrum of the problem. In the purely nonlinear
case, on the other hand, for C = 0 we have An = 0, the elliptic modulus becomes a constant,
namely k = 1/

√
2 and the transcendental equation reduces to an algebraic equation

αnωb
2 = γ

[
(αn − αn+1)

3 + (αn − αn−1)
3
]
. (20)

Consequently, our expressions reduce to known exact analytical results [2, 3, 6, 9, 11].
Finally, in the general case, we can expand the elliptic integral K in powers of the (assumed
small) modulus k, make the drastic approximation of retaining only the first term, namely
2K(k)/π ≈ 1, and obtain

αnωb
2 = C(2αn − αn+1 − αn−1) + γ

[
(αn − αn+1)

3 + (αn − αn−1)
3
]
. (21)

The nonlinear eigenvalue equation (21) is identical to that obtained by Sievers and Takeno for
the FPU lattice through the use of the RWA1 [1]. Clearly, successively improved algebraic
approximations can be derived if needed. The construction of the FPU breather amplitudes
can be done straightforwardly as in the previous cases with on-site potentials.

The use of the algebraic method in the previous cases depended directly on the separability
of the nonlinear potential V (xn) and the possibility of finding exact solutions to the resulting
nonlinear differential equation. It is possible however that either one or both these conditions
are not met. In this case, while the method does not furnish analytical expressions it
nevertheless provides readily accurate numerical DBs. Using equations (1) and (2) with
the ansatz (4) we obtain

ẍ = − ∂

∂x
W({αn}, x) (22)

αnW({αn}, x) = C

2

[
(αn+1 − αn)

2 + (αn−1 − αn)
2] x2 + V (αnx). (23)

Equation (23) represents the motion of an effective particle in the general potentialW({αn}, x)
that contains both the reduced variable x as well as the local amplitudes {αn} that need to be
determined selfconsistently. The expression for the period of the nth oscillator is obtained
easily and given by

Tn = 4
∫ 1

0

dx√
2(W({αn}, 0)− W({αn}, x))

. (24)

The breather solution is now obtained through the numerical solution of the following algebraic
system:

Tn = Tb (25)
1 Except for a factor of 3/4 in the nonlinear term that stems from the RWA.
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where Tb is the desired breather period. Different breather and multibreather states can be
found as different roots of this system that have to be accessed by judicial selection of the
initial codes for the local amplitudes {αn}.

The algebraic method we presented is quite general and can be applied to a large class
of problems, including higher dimensional lattices, long range interactions and disordered
lattices. The essence of the method is that instead of making the RWA in equation (5),
i.e. x3 � Dx, where D is an appropriate constant [1–3], we solve the latter equation exactly.
Numerical work has shown that the method is more accurate than the RWA and agrees generally
with the results obtained from the numerically exact anticontinuous limit method, typically to
10−3 or sometimes better. Application of the algebraic method in the present study resulted in
Jacobian elliptic function DB time-dependence, with spatial distribution determined through
the roots of a transcendental equation associated with a dispersion relation-like nonlinear
eigenvalue problem. Root sequences relevant to DBs are decaying ones, while other classes of
roots give rise to linear and nonlinear extended modes. Explicit analytical breather expressions
can be obtained for both even and odd power potentials as well as some other functional cases.
We note that the algebraic method can easily be adapted to generate multibreathers and also be
applied to disordered lattices where DB amplitudes adjust to local imperfections. The nature
of the analytical solution clearly suggests that DBs can be thought of to a good approximation
as discrete, localized, particle-like entities with cnoidal wave internal structure, that adapt
to local environments and move by coupling translational motion to their internal dynamics.
We also comment in passing here, that the availability of analytic expressions can also be
used to describe approximately the depinned DB uniform dynamics. In the spirit of the study
by Hori and Takeno [4] we make the ansatz xn(t) = αn(t)cn[µn − εnt|kn] where µ is a
parameter. Upon substituting it into equation (3) we obtain approximate closed equations
for the time-dependent amplitudes αn (t) (using however a nonlinear extension of the rotating
wave approximation, i.e. dn[µn− εnt|kn] ≈ 1, where dn is an elliptic function). Approximate
solution of the latter, results finally in xn(t) = an sech[ζ(n−υt)]cn[µn−εnt|kn], representing
a DB travelling with velocity υ and an, ζ, µ are determined parameters that depend on the
specific model. The parameters ζ, µ are homogeneous functions of the breather velocity,
whereas to low order, an and εn can be obtained by using the algebraic method as in the static
breather case. Localized mode evolution of this type was considered earlier utilizing the RWA
[4], as well as being observed numerically [5, 12]. The explicit use of the algebraic method in
determining breather mobility demands extensive numerics and will be presented elsewhere.
We conclude that the approach presented here produces quite accurate static and approximate
moving breathers, provides useful breather functional forms and by using minimal numerics
proves to be quite fast.
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